SHIVALIK SR. SEC. SCHOOL, BHARTHARI ROAD, BEHROR

CLASS XI
 TOPIC:- BASIC MATHEMATICS SUBJECT- Mathematics (Ramesh Suthar Sir)
 1. INTEGER EXPONENTS

$>$ If \mathbf{a} is any number and n is a positive integer, then $\mathrm{a}^{\mathrm{n}}=\mathbf{a}$ a.a.a. \qquad a (n times)
$>a^{0}=1 ; \quad a \neq 0$
$>$ If a is any non - zero numbers and n is a positive integer, then $\mathrm{a}^{-\mathrm{n}}=\frac{1}{a^{n}}$
$>$ Properties:-
(1) $a^{n} \cdot a^{m}=a^{n+m}$
(2) $\left(a^{n}\right)^{m}=a^{n m}$
(3) $(a b)^{n}=a^{n} b^{n}$
(4) $\frac{a^{n}}{a^{m}}=\left\{\begin{aligned} \mathrm{a}^{\mathrm{n}-\mathrm{m}} & ; \mathrm{n}>m \\ & ; \mathrm{a} \neq 0 \\ \frac{1}{a^{m-n}} & ; \mathrm{m}>n\end{aligned}\right.$
(5) $\left(\frac{\mathrm{a}}{\mathrm{b}}\right)^{\mathrm{n}}=\frac{\mathrm{a}^{\mathrm{n}}}{\mathrm{b}^{\mathrm{n}}} ; \mathrm{b} \neq 0$
(6) $\left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n}=\frac{b^{n}}{a^{n}}$
(7) $(a b)^{-n}=\frac{1}{(a b)^{n}}$
(8) $\frac{1}{a^{-n}}=a^{n}$
(9) $\frac{a^{-n}}{b^{-m}}=\frac{b^{m}}{a^{n}}$
(10) $\left(a^{n} b^{m}\right)^{\mathrm{k}}=a^{\mathrm{nk}} \cdot b^{\mathrm{mk}}$
(11) $\left(\frac{a^{n}}{b^{m}}\right)^{K}=\frac{a^{n k}}{b^{m k}}$

Ques :- Simplify each of the following and write the answere with only positive exponents :-
(a) $\left(4 x^{-4} y^{5}\right)^{3}$
(b) $\left(-10 z^{2} y^{-4}\right)^{2} \cdot\left(z^{3} y\right)^{-5}$
(c) $\frac{\mathrm{n}^{2} \mathrm{~m}}{7 \mathrm{~m}^{-4} \mathrm{n}^{3}}$
(d) $\frac{5 x^{-1} y^{-4}}{\left(3 y^{5}\right)^{-2} \cdot x^{9}}$
(e) $\left(\frac{z^{-5}}{z^{-2} x^{-1}}\right)^{6}$
(f) $\left(\frac{24 a^{3} b^{-8}}{6 a^{-5} b}\right)^{-2}$

2. RATIONAL EXPONENTS

$>$ Exponents in the form of $b^{m / n}$; Where both m and n are integers is called rational exponents.

$$
\begin{aligned}
& * b^{1 / n} \text { is called the nth root of } b \text {. } \\
& \& a=b^{1 / n} \Leftrightarrow a^{n}=b
\end{aligned}
$$

Q. 1 Evaluate each of the following :-
(a) $(25)^{\frac{1}{2}}$
(b) $(32)^{\frac{1}{5}}$
(c) $(81)^{\frac{1}{4}}$
(d) $(-8)^{\frac{1}{3}}$
(e) $(16)^{\frac{1}{4}}$
(f) $-16^{\frac{1}{4}}$
Q. 2 Evalute each of the following :-
(a) $(8)^{\frac{2}{3}}$
(b) $(625)^{\frac{3}{4}}$
(c) $\left(\frac{243}{32}\right)^{\frac{4}{5}}$

3. RADICALS

$>$ If n is a positive integer that is greater than 1 and a is a real number than. $\sqrt[n]{a}=\mathrm{a}^{1 / n}$ Where the symbol $\sqrt{ }$ is called redicals :-
$>$ Properties:-
(1) $\sqrt[n]{a^{n}}=a$
(2) $\sqrt[n]{a b}=\sqrt[n]{a} \cdot \sqrt[n]{b}$
(3) $\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}$
Q. 1 Write each of the following radicals in exponent form :-
(a) $\sqrt[4]{16}$
(b) $\sqrt[10]{8 x}$
(c) $\sqrt{x^{2}+y^{2}}$
Q. 2 Evaluate each of the following :-
(a) $\sqrt{16}$
(b) $\sqrt[4]{16}$
(c) $\sqrt[5]{243}$
(d) $\sqrt[4]{1296}$
(e) $\sqrt[3]{-125}$
(f) $\sqrt[4]{256}$

4. PROPORTION

- When two ratios are equal, then the four quantities compositing then are said to be proportional :-

$$
\text { If } \begin{aligned}
\frac{a}{b}=\frac{c}{d} & \Rightarrow a: b=c: d \\
& \Rightarrow a: b:: c: d
\end{aligned}
$$

> Product of external terms = Product of internal terms
$>\mathrm{axd}=\mathrm{bx} \mathrm{c}$
$>$ If $\frac{a}{b}=\frac{c}{d} \Rightarrow \frac{b}{a}=\frac{d}{c} \quad$ (Reciprocal Laws)
\Rightarrow If $\quad \frac{a}{b}=\frac{c}{d} \Rightarrow \frac{a}{c}=\frac{b}{d} \quad$ (Alternate Laws)
$>$ If $\frac{a}{b}=\frac{c}{d} \Rightarrow \frac{a+b}{b}=\frac{c+d}{d} \quad$ (Componendo)
$>$ If $\frac{a}{b}=\frac{c}{d} \Rightarrow \frac{a-b}{b}=\frac{c-d}{d} \quad$ (Dividendo)
$>$ If $\frac{a}{b}=\frac{c}{d} \Rightarrow \frac{a+b}{a-b}=\frac{c+d}{c-d} \quad$ (Componendo \& Dividendo)

5. LOGARITHM

\& Defination :- $2 \mathrm{fa} \mathrm{a}, \mathrm{n}, \mathrm{x}$ are three real number such that $\mathrm{a}>0, \mathrm{x}>0$ and $\mathrm{n} \in \mathrm{R}$

$$
\begin{aligned}
& \therefore \mathrm{a}^{\mathrm{n}}=\mathrm{x} \Rightarrow \log _{a} x=\mathrm{n} \quad \text { (Logarithm form) } \\
& \therefore \log _{a} x=\mathrm{n} \Rightarrow \mathrm{a}^{\mathrm{n}}=\mathrm{x} \quad \text { (Exponent form) }
\end{aligned}
$$

Composite form :- $\mathrm{a}^{\mathrm{n}}=\mathrm{x} \Leftrightarrow \log _{a} x=\mathrm{n}$

* Examples :-

(i) $10^{-3}=0.001 \Longrightarrow \log _{10} 0.001=--3$
(ii) $\log _{4} 256=4 \Longrightarrow 4^{4}=256$

Note :- $\mathbf{a}^{\mathrm{n}}=\mathrm{x} \Rightarrow \log _{a} x=\mathrm{n}$, Base of logarithm $=\mathbf{a}$, Argument $=\mathrm{x}$

* Properties of logarithm :-

If $\mathrm{M}, \mathrm{N}>0$ and $\mathrm{a}>0, \mathrm{~b}>0$
(i) Addition Law :-
$\log _{a} \mathrm{MN}=\log _{a} \mathrm{M}+\log _{a} N$
Proof :- Let $\log _{a} \mathrm{M}=\mathrm{x} \Rightarrow \mathrm{M}=\mathrm{a}^{\mathrm{x}}$
and $\log _{a} \mathrm{~N}=\mathrm{y} \Rightarrow \mathrm{N}=\mathrm{a}^{\mathrm{y}}$
Multiply by equations (1) and (2), we get
$\Rightarrow M N=a^{x} \cdot a^{y}$
$\Rightarrow M N=a^{x+y} \quad\left\{\therefore a^{m} \cdot a^{n}=a^{m+n}\right\}$
Convert into logarithm,
$\Rightarrow \log _{a}(\mathrm{MN})=\mathrm{xy}$
Value put from equation (1) \& (2), We get
$\Rightarrow \log _{a} \mathrm{MN}=\log _{a} \mathrm{M}+\log _{a} \mathrm{~N}$
(ii) Difference Law :-
$\log _{a}\left(\frac{\mathrm{M}}{\mathrm{N}}\right)=\log _{a} \mathrm{M}+\log _{a} \mathrm{~N}$
Proof :- Let $\log _{a} \mathrm{M}=\mathrm{x} \Rightarrow \mathrm{M}=\mathrm{a}^{\mathrm{x}}$
and $\log _{a} \mathrm{~N}=\mathrm{y} \Rightarrow \mathrm{N}=\mathrm{a}^{\mathrm{y}}$
Multiply by equations (1) and (2), we get
$\Rightarrow \frac{\mathrm{M}}{\mathrm{N}}=\frac{\mathrm{a}^{x}}{\mathrm{a}^{y}}$
$\Rightarrow \frac{\mathrm{M}}{\mathrm{N}}=\mathrm{a}^{\mathrm{x}-\mathrm{y}} \quad\left\{\therefore \mathrm{a}^{\mathrm{m}} \div \mathrm{a}^{\mathrm{n}}=\mathrm{a}^{\mathrm{m}-\mathrm{n}} ; \mathrm{m}>\mathrm{n}\right\}$
Convert into logarithm,
$\Rightarrow \log _{a}\left(\frac{\mathrm{M}}{\mathrm{N}}\right)=\mathrm{x}-\mathrm{y}$
Value put from equation (1) \& (2), We get
$\Rightarrow \log _{a}\left(\frac{\mathrm{M}}{\mathrm{N}}\right)=\log _{a} \mathrm{M}-\log _{a} \mathrm{~N}$
(iii) Multiplication Law :-
$\log _{a} \mathrm{M}^{\mathrm{N}}=\mathrm{N} \cdot \log _{a} \mathrm{M}$
$\Rightarrow M^{N}=\left(a^{x}\right)^{N}$
$\Rightarrow M^{N}=a^{N x}$
Convert into logarithm,
$\Rightarrow \log _{a} \mathrm{M}^{\mathrm{N}}=\mathrm{N} . \mathrm{x}$
put the value of x , we get
$\Rightarrow \log _{a} \mathrm{M}^{\mathrm{N}}=\mathrm{N} \cdot \log _{a} \mathrm{M}$
(iv) $\boldsymbol{a}^{\log _{\mathrm{a}} \mathrm{M}}=\mathrm{M}$

Proof :- Let $\log _{\mathrm{a}} \mathbf{M}=\mathbf{x}$

$$
\Rightarrow \mathrm{a}^{\mathrm{x}}=\mathrm{M}
$$

put the value of x,we get

$$
\Rightarrow a^{\log _{\mathrm{a}} \mathrm{M}}=\mathrm{M}
$$

(v) Base convert formula :-
$\log _{N^{M}}=\frac{\log _{a M}}{\log _{a N}}=\frac{\log _{e^{M}}}{\log _{e^{N}}}=\frac{\log _{10} M}{\log _{10^{N}}}=$ \qquad

OR

$\log _{\mathrm{N}} \mathrm{M} x \log _{\mathrm{a}} \mathrm{N}=\log _{\mathrm{a}} \mathrm{M}$
Proof :- Let $\log _{N} \mathrm{M}=\mathrm{x} \Rightarrow \mathrm{N}^{\mathrm{x}}=\mathrm{M}$
and $\log _{\mathrm{a}} \mathrm{N}=\mathrm{y} \Rightarrow \mathrm{a}^{\mathrm{y}}=\mathrm{N}$
Put the value of N from equation (2) to equation (1)
$\Rightarrow\left(a^{y}\right)^{x}=\mathrm{M}$
$\Rightarrow a^{x y}=\mathrm{M}$
Convert into logarithm
$\Rightarrow \log _{\mathrm{a}} \mathrm{M}=\mathrm{xy}$
Put the value of x and y in from equation (1) and (2)
$\Rightarrow \log _{\mathrm{a}} \mathrm{M}=\log _{\mathrm{N}} \mathrm{M} x \log _{\mathrm{a}} \mathrm{N}$
$\Rightarrow \log _{\mathrm{N}} \mathrm{M}=\frac{\log _{a^{2}} \mathrm{M}}{\log _{\mathrm{a}} \mathrm{N}}$
(vi) $\log _{b} a \quad x \quad \log _{a} b=1 \Longrightarrow \quad \log _{b} a=\frac{1}{\log _{a} b}$

Proof :- Let $\log _{\mathrm{b}} \mathrm{a}=\mathrm{x} \Rightarrow \mathrm{b}^{\mathrm{x}}=\mathrm{a}$
and $\log _{\mathrm{a}} \mathrm{b}=\mathrm{y} \Longrightarrow \mathrm{a}^{\mathrm{y}}=\mathrm{b}$
Put the value of b from equation (2) to equation (1)
$\Rightarrow\left(a^{y}\right)^{x}=\mathrm{a}$
$\Rightarrow a^{x y}=a^{1} \quad\left\{\therefore a^{\mathrm{x}}=\mathrm{a}^{\mathrm{y}} \Leftrightarrow \mathrm{x}=\mathrm{y}\right\}$
$\Rightarrow x y=1$
Convert into logarithm
$\Rightarrow \log _{\mathrm{a}} \mathrm{M}=\mathrm{xy}$
Put the value of x and y in from equation (1) and (2)
$\Rightarrow \log _{\mathrm{b}} \mathrm{a} \quad \mathrm{x} \quad \log _{\mathrm{a}} \mathrm{b}=1$
(vii) $\log _{\mathrm{a}} \mathrm{a}=1 \quad ; \mathrm{a} \neq 1$

Proof :- We know that

$$
\begin{aligned}
& \therefore \log _{\mathrm{e}} \mathrm{e}=1 \\
& \therefore \log _{10} 10=1 \\
& \therefore \log _{2} 2=1
\end{aligned}
$$

$\therefore \mathrm{a}^{1}=\mathrm{a}$
$\Rightarrow \log _{\mathrm{a}^{\mathrm{a}}}=1$
(viii) $\log _{a} 1=0$; $\mathbf{a} \neq 1$

Proof :-
$\therefore \log _{2} 1=0$
$\therefore \mathrm{a}^{0}=1$
$\therefore \log _{10} 1=0$
Convert into logarithm
$\therefore \log _{\mathrm{e}} 1=0$
$\Rightarrow \log _{\mathrm{a}} 1=0$
(ix) $\log _{\mathrm{a}} 0=-\infty \quad ; a>1, a \neq 0$

Proof :- $\therefore \mathrm{a}^{-\infty}=0$
$\Rightarrow \log _{\mathrm{a}} 0=-\infty$
(x) $\log _{\mathrm{a}} 0=+\infty \quad ; a<1, a \neq 0$

Proof :-
$\therefore \mathrm{a}<1$
$a^{-\infty}=0$
Let $\mathrm{a}=\frac{1}{\mathrm{~b}}$ then $\mathrm{b}>1$
$a^{\infty}=\infty$
$\therefore a^{-\infty}=0$
$a^{0}=1$
$\Rightarrow\left(\frac{1}{b}\right)^{-\infty}$
$\Rightarrow \frac{1}{\mathrm{~b}^{-\infty}}=0$

Kinds of logarithm :-

(i) Common logarithm :-

Logarithm which base has 10 .
eg :- $\log _{10} \mathrm{X}, \log _{10} \mathrm{e}$,
(ii) Natural logarithm :-

Logarithm which base has e.
eg :- $\log _{e} 2, \log _{e} x$,

Relation between common \& Naturral logarithm

Using Base - convert formula ,
$\therefore \log _{e} \mathrm{x}=\frac{\log _{10} \mathrm{x}}{\log _{10} \mathrm{e}}$
$\Rightarrow \log _{\mathrm{e}} \mathrm{x}=\left(\log _{\mathrm{e}} \mathrm{x}\right) \mathrm{x}\left(\log _{10} \mathrm{x}\right)$
$\Rightarrow \ln x=\left(\log _{\mathrm{e}} \mathrm{x}\right) \mathrm{x}\left(\log _{10} \mathrm{x}\right)$
$\Rightarrow \ln x=2.303 \log _{10} x$

-: Excercise :-

Write the following in logarithm form :-

1. $2^{6}=64$
2. $10^{4}=10000$
3. $2^{10}=1024$
4. $5^{-2}=\frac{1}{25}$
5. $10^{-3}=0.001$
6. $(4)^{3 / 2}=8$

Write the following in the exponent form :-

7. $\log _{5} 25=2$
8. $\log _{3} 729=6$
9. $\log _{10}(0.001)=--3$
10. $\log _{10}(0.1)=--1 \quad 11 . \log _{3}(1 / 27)=--3$
11. $\log _{\sqrt{2}} 4=4$
12. If $\log _{81} x=\frac{3}{2}$, then find the value of x.
13. If $\log _{125} \mathrm{P}=\frac{1}{6}$, then find the value of P .
14. If $\log _{4} \mathrm{M}=1.5$, then find the value of m .
15. Prove that $:-\log 630=\log 2+2 \log 3+\log 5+\log 7$
16. Prove that $:-\log 10+\log 100+\log 1000+\log 10000=10$
17. Prove that :- $\log \left(\frac{9}{14}\right)+\log \left(\frac{35}{25}\right)-\log \left(\frac{15}{16}\right)=0$
18. If $\log 2=0.3010, \log 3=0.4771, \log 7=0.8451$ and $\log 11=1.0414$, then find the value of following :-
(i) $\log 36$
(ii) $\log \left(\frac{42}{11}\right)$
(iii) $\log \left(\frac{11}{7}\right)^{5}$
(iv) $\log 70$
(v) $\log \frac{121}{120}$
(vi) $\log 5^{1 / 3}$
19. Find the value of x from following equations :-

$$
\log _{x} 4+\log _{x} 16+\log _{x} 64=12
$$

21.Solve the equation :- $\log (x+1)-\log (x-1)=1$
22. Find the value :- $3^{2-\log _{3} 4}$
23. Find :- (i) $\log 2+1$
(ii) $\log _{5} 3 \cdot \log _{3} 4 \cdot \log _{2} 5$
24. If $\log 2=0.3010$, then find the value of $\log 200$.

25 . Find the value of $\log 6+2 \log 5+\log 4-\log 3-\log 2$
6. POLYNOMIAL
\& Remainder Theorm :- Let $\mathrm{P}(\mathrm{x})$ be any polynomial of degree greater than or equal to one
and Let a be any real number. If $\mathrm{P}(\mathrm{x})$ is divided by the linear polynomial ($\mathrm{x}-\mathrm{a}$), then the remainder is $\mathbf{P}(\mathbf{a})$.

Factor Theorm :- Let $\mathrm{P}(x)$ is a polynomial of degree $\mathrm{n} \geq 1$ and a is any real number, then :-
(i) $(x-\mathrm{a})$ is a factor of $\mathrm{P}(x)$, if $\mathrm{P}(\mathrm{a})=0$, and
(ii) $\mathrm{P}(\mathrm{a})=0$, if $(x-\mathrm{a})$ is a factor of $\mathrm{P}(x)$.
i.e. $\quad(x-\mathrm{a})$ is a factor of $\mathrm{P}(x) \Leftrightarrow \mathrm{P}(\mathrm{a})=0$

* Algebraic Identities :-

1. $(a+b)^{2}=a^{2}+2 a b+b^{2}=(a-b)^{2}+4 a b$
2. $(a+b)^{2}=a^{2}-2 a b+b^{2}=(a+b)^{2}-4 a b$
3. $\mathrm{a}^{2}-\mathrm{b}^{2}=(\mathrm{a}+\mathrm{b})(\mathrm{a}-\mathrm{b})$
4. $(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)$
5. $(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)$
6. $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
7. $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$
8. (i) $(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 a c$
(ii) $(\mathrm{a}+\mathrm{b}+\mathrm{c})^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}+2 \mathrm{abc}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$
9. $a^{2}+b^{2}+c^{2}-a b-b c-a c=\frac{1}{2}\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right]$
10. $a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$
11. If $a+b+c=0$, then $a^{3}+b^{3}+c^{3}=3 a b c$
12. $a^{4}+a^{2}+1=\left(a^{2}+a+1\right)\left(a^{2}-a+1\right)$

-: Exercise :-

1. $6 x^{7}+3 x^{4}-9 x^{3}$
2. $a^{3} b^{8}-7 a^{10} b^{4}+2 a^{5} b^{2}$
3. $2 x+\left(x^{2}+1\right)^{3}-16\left(x^{2}+1\right)^{5}$
4. $x^{2}+(2-6 x)+4 x(4-12 x)$
5. $x^{2}-2 x-8$
6. $z^{2}-10 z+21$
7. $y^{2}+16 y+60$
8. $5 y^{2}+14 y-3$
9. $6 t^{2}-19 t-7$
10. $4 z^{2}+19 z+12$
11. $z^{2}+14 z+49$
12. $4 w^{2}-25$
13. $81 x^{2}-36 x+4$
14. $12 x^{2}-7 x+1$
15. $2 x^{2}-7 x+3$
16. $6 x^{2}+5 x-6$
17. $3 x^{2}-x-4$
18. $y^{2}-5 y+6$
19. $6 x^{2}+13 x+5$
20. $x^{3}-2 x^{2}-x+2$
21. $x^{3}-3 x^{2}-9 x-5$
22. $x^{3}+13 x^{2}+32 x+20$
23. $2 y^{3}+y^{2}-2 y-1$

7. OUADRATIC EOUATION

* An equation of the form $a x^{2}+b x+c=0$, where $a \neq 0, a, b, c \in R$ is called a quardraticequation with real coefficients.
* A quadratic equation has two degree equation.
* The quantity $\mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}$ is known as the discriminant of the quadratic equations.
* Roots of quadratic equation are given by :-
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Where :- $\quad a=$ Coefficient of x^{2}
$\mathrm{b}=$ Coefficient of x
$\mathrm{c}=\mathrm{constant}$
\& Nature of roots :- $D=b^{2}-4 a c$

1. The roots are real and distinct iff $\mathrm{D}>0$
2. The roots are real and equal iff $\mathrm{D}=0$
3. The roots are complex with non - zero imaginary part iff $\mathrm{D}<0$
4. The roots are rational iff $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are rational and D is a perfect square.
5. The roots are irrational iff $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are rational and D is not a perfect square.
6. Quadratic equation has reciprocal root if $\mathrm{C}=\mathrm{O}$

* Relation between coefficient and Roots of quadaric equations:-

Let α and β are two roots of a quadratic equation
$a x^{2}+b x+c=0$, then
$\therefore \alpha+\beta=-\frac{\text { Coeff. of } x}{\text { Coeff .of } x^{2}}$
$\therefore \alpha \beta=\frac{\text { Constant }}{\text { Coeff .of } x^{2}}$
$\Rightarrow \alpha+\beta=-\frac{b}{a} \quad \Rightarrow \alpha \beta=\frac{c}{a}$

* Symmetric function :- Let α and β are two roots of a quadratic equation $a x^{2}+b x+c=0$, then $\alpha+\beta=-\frac{b}{a}$ and $\alpha \beta=\frac{c}{a}$ so α and β are called a symmetric function. If function is invariant when α and β substitude mutually.
* Some useful results :-

1. $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$
2. $\alpha^{3}+\beta^{3}=(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)$
3. $\alpha^{4}+\beta^{4}=\left[(\alpha+\beta)^{2}-2 \alpha \beta\right]^{2}-2(\alpha \beta)^{2}$
4. $\alpha-\beta=\sqrt{(\alpha+\beta)^{2}-4 \alpha \beta}$
5. $\alpha^{2}-\beta^{2}=(\alpha+\beta) \sqrt{(\alpha+\beta)^{2}-4 \alpha \beta}$

$$
\begin{aligned}
& \text { 6. } \alpha^{3}-\beta^{3}=\left[(\alpha+\beta)^{2}-\alpha \beta\right](\alpha+\beta) \\
& \text { 7. } \alpha^{4}-\beta^{4}=(\alpha+\beta) \cdot \sqrt{(\alpha+\beta)^{2}-4 \alpha \beta} \cdot\left[(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)\right]
\end{aligned}
$$

-: Exercise :-

1. If α and β are roots of equation $2 x^{2}-5 x+7=0$, then find the equation with roots $(2 \alpha+3 \beta)$ and $(3 \alpha+2 \beta)$.
2. If $\mathrm{a} \neq \mathrm{b}$, then find the nature of quadratic equation $2\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right) x^{2}+2(\mathrm{a}+\mathrm{b}) x+1=0$.
3. If α and β are roots of equation $p x^{2}+q x+r=0$, then find the value of $\alpha^{3} \beta+\beta^{3} \alpha$.
4. If the product of roots of equation $m x^{2}+6 x+(2 m-1)=0$ is -1 , then find the value of m.
5. The roots of equation $2 x^{2}+\mathrm{kx}-5=0$ and $x^{2}-3 x-4=0$ are common root, then find value of k.
6. For equation $3 x^{2}+p x+3=0, p>0$, if one root is square of other root, then find the value of p .
7. In quadratic equation $x^{2}+\mathrm{p} x+\mathrm{q}=0$ roots are $\tan 30^{\circ}$ and $\tan 15^{\circ}$ respectively, then find the value of $(2+q-p)$.
8. Let α, β are roots of equation $x^{2}-\mathrm{p} x+\mathrm{r}=0$ and $\alpha / 2,2 \beta$ are roots of equation $x^{2}-\mathrm{q} x+\mathrm{r}=0$ then find the value of r.
9. If equation $x^{2}+a x+12=0$ has a root 4 , such that equation $x^{2}+a x+b=0$ has equal roots, then find b.
10. If a, b, c are three sides of a triangle, such that equation $x^{2}-2(a+b+c) x+3 \lambda(a b+b c+c a)=0$ have real roots, find the value of λ.

8. CUBIC EOUATION

\& An equation $a x^{3}+b x^{2}+c x+d=0 ; a \neq 0, a, b, c, d \in R$ is known as cubic equation with real coefficients.

* The degree of a cubic equation is 3 .
\& If α, β, γ are roots of cubic equation, then relation between roots and coefficient are given below :-

$$
\begin{aligned}
& \alpha+\beta+\gamma=-\frac{\text { Coeff .of } x^{2}}{\text { Coeff .of } x^{3}}=-\frac{b}{a} \\
& \alpha \beta+\beta \gamma+\alpha \gamma=\frac{\text { Coeff .of } x}{\text { Coeff } . \text { f } x^{3}}=-\frac{c}{a} \\
& \alpha \beta \gamma=-\frac{\text { Constant }}{\text { Coeff. of } x^{3}}=-\frac{d}{a}
\end{aligned}
$$

* Equation of roots α, β and γ is :-

$$
x^{3}-(\alpha+\beta+\gamma) x^{2}+(\alpha \beta+\beta \gamma+\alpha \gamma) x-\alpha \beta \gamma=0
$$

